Franco Valentino Saliola

Franco Valentino Saliola

Professeur
Photo de Franco Valentino Saliola
Téléphone : (514) 987-3000 poste 7791
Local : PK-4235
Informations générales

Unités de recherche

  • Laboratoire de combinatoire et d'informatique mathématique (LACIM)
Enseignement

Directions de thèses et mémoires

Thèses de doctorat
Mémoires

Publications

Articles scientifiques
  • Orellana, R., Saliola, F., Schilling, A. et Zabrocki, M. (2022). Plethysm and the algebra of uniform block permutations. Algebraic Combinatorics, 5(5), 1165–1203. http://dx.doi.org/10.5802/alco.243.
  • Margolis, S., Saliola, F.V. et Steinberg, B. (2021). Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry. Memoirs of the American Mathematical Society, 274, article 1345. http://dx.doi.org/10.1090/memo/1345.
  • Colmenarejo, L., Orellana, R., Saliola, F., Schilling, A. et Zabrocki, M. (2020). An insertion algorithm on multiset partitions with applications to diagram algebras. Journal of Algebra, 557, 97–128. http://dx.doi.org/10.1016/j.jalgebra.2020.04.010.
  • Dieker, A.B. et Saliola, F.V. (2018). Spectral analysis of random-to-random Markov chains. Advances in Mathematics, 323, 427–485. http://dx.doi.org/10.1016/j.aim.2017.10.034.
  • Berg, C., Bergeron, N., Saliola, F., Serrano, L. et Zabrocki, M. (2017). Multiplicative structures of the immaculate basis of non-commutative symmetric functions. Journal of Combinatorial Theory. Series A, 152, 10–44. http://dx.doi.org/10.1016/j.jcta.2017.05.003.
  • Margolis, S., Saliola, F. et Steinberg, B. (2015). Combinatorial topology and the global dimension of algebras arising in combinatorics. Journal of the European Mathematical Society (JEMS), 17(12), 3037–3080. http://dx.doi.org/10.4171/JEMS/579.
  • Berg, C., Bergeron, N., Saliola, F., Serrano, L. et Zabrocki, M. (2015). Indecomposable modules for the dual immaculate basis of quasi-symmetric functions. Proceedings of the American Mathematical Society, 143(3), 991–1000. https://www.ams.org/journals/proc/2015-143-03/S0002-9939-2014-12298-2/?active=current.
  • Berg, C., Bergeron, N., Saliola, F., Serrano, L. et Zabrocki, M. (2014). A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions. Canadian Journal of Mathematics/Journal canadien de mathématiques, 66(3), 525–565. http://dx.doi.org/10.4153/CJM-2013-013-0.
  • Berg, C., Saliola, F. et Serrano, L. (2014). Combinatorial expansions for families of noncommutative k-Schur functions. SIAM Journal on Discrete Mathematics, 28(3), 1074–1092. http://dx.doi.org/10.1137/120890454.
  • Berg, C., Saliola, F. et Serrano, L. (2014). Pieri operators on the affine nilCoxeter algebra. Transactions of the American Mathematical Society, 366(1), 531–546. http://dx.doi.org/10.1090/S0002-9947-2013-05895-3.
  • Margolis, S., Saliola, F. et Steinberg, B. (2014). Semigroups embeddable in hyperplane face monoids. Semigroup Forum, 89(1), 236–248. http://dx.doi.org/10.1007/s00233-013-9542-3.
  • Reiner, V., Saliola, F. et Welker, V. (2014). Spectra of symmetrized shuffling operators. Memoirs of the American Mathematical Society, 228, article 1072. http://dx.doi.org/10.1090/memo/1072.
  • Berg, C., Saliola, F. et Serrano, L. (2013). The down operator and expansions of near rectangular k-Schur functions. Journal of Combinatorial Theory. Series A, 120(3), 623–636. http://dx.doi.org/10.1016/j.jcta.2012.11.004.
  • Saliola, F. (2012). Eigenvectors for a random walk on a left-regular band. Advances in Applied Mathematics, 48(2), 306–311. http://dx.doi.org/10.1016/j.aam.2011.09.002.
  • Saliola, F. et Thomas, H. (2012). Oriented Interval Greedoids. Discrete and Computational Geometry, 47(1), 64–105. http://dx.doi.org/10.1007/s00454-011-9383-3.
  • Aguiar, M., André, C., Benedetti, C., Bergeron, N., Chen, Z., Diaconis, P., Hendrickson, A., Hsiao, S., Isaacs, I.M., Jedwab, A., Johnson, K., Karaali, G., Lauve, A., Le, T., Lewis, S., Li, H., Magaard, K., Marberg, E., Novelli, J.-C., Pang, A., Saliola, F.,... Zabrocki, M. (2012). Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras. Advances in Mathematics, 229(4), 2310–2337. http://dx.doi.org/10.1016/j.aim.2011.12.024.
  • Berg, C., Bergeron, N., Bhargava, S. et Saliola, F. (2011). Primitive orthogonal idempotents for R-trivial monoids. Journal of Algebra, 348(1), 446–461. http://dx.doi.org/10.1016/j.jalgebra.2011.10.006.
  • Novelli, J.-C., Saliola, F. et Thibon, J.-Y. (2010). Representation theory of the higher-order peak algebras. Journal of Algebraic Combinatorics, 32(4), 465–495. http://dx.doi.org/10.1007/s10801-010-0223-y.
  • Saliola, F.V. (2010). The Loewy length of the descent Algebra of type D. Algebras and Representation Theory, 13(2), 243–254. http://dx.doi.org/10.1007/s10468-008-9119-0.
  • Saliola, F.V. (2009). The face semigroup Algebra of a hyperplane arrangement. Canadian Journal of Mathematics/Journal canadien de mathématiques, 61(4), 904–929. http://dx.doi.org/10.4153/CJM-2009-046-2.
  • Glen, A., Lauve, A. et Saliola, F.V. (2008). A note on the Markoff condition and central words. Information Processing Letters, 105(6), 241–244. http://dx.doi.org/10.1016/j.ipl.2007.09.005.
  • Saliola, F.V. (2008). On the quiver of the descent algebra. Journal of Algebra, 320(11), 3866–3894. http://dx.doi.org/10.1016/j.jalgebra.2008.07.009.
  • Saliola, F.V. (2007). The quiver of the semigroup algebra of a left regular band. International Journal of Algebra and Computation, 17(8), 1593–1610. http://dx.doi.org/10.1142/S0218196707004219.
  • Saliola, F. et Whiteley, W. (2004). Constraining plane configurations in CAD: Circles, lines, and angles in the plane. SIAM Journal on Discrete Mathematics, 18(2), 246–271. http://dx.doi.org/10.1137/S0895480100374138.
Livres
  • Berstel, J., Lauve, A., Reutenauer, C. et Saliola, F.V. (2008). Combinatorics on Words: Christoffel Words and Repetitions in Words. American Mathematical Society.
    Notes: vol. 27 of CRM Monograph Series
Actes de colloque
  • Colmenarejo, L., Orellana, R., Saliola, F., Schilling, A. et Zabrocki, M. (2020). An insertion algorithm for diagram algebras, Séminaire Lotharingien de Combinatoire – FPSAC 2020. Proceedings of the 32nd International Conference on "Formal Power Series and Algebraic Combinatorics", July 6 – 24, 2020, (84B.48). https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2020/48.html.
  • S. Margolis, F.S., and B. Steinberg,. (2014). Poset topology and homological invariants of algebras arising in algebraic combinatorics. Dans DMTCS Proceedings: 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), (vol. AT, p. 71–82). http://dx.doi.org/10.46298/dmtcs.2381.
  • Berg, C., Bergeron, N., Saliola, F., Serrano, L. et Zabrocki, M. (2013). The immaculate basis of the non-commutative symmetric functions (Extended Abstract). Dans DMTCS Proceedings: 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), (vol. AS, p. 265-276). https://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewFile/dmAS0123/4176.pdf.
  • Berg, C., Saliola, F. et Serrano, L. (2012). The down operator and expansions of near rectangular k-Schur functions. Dans DMTCS Proceedings: 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), (vol. AR, p. 433-444). http://dx.doi.org/10.46298/dmtcs.3052.
  • Berg, C., Bergeron, N., Bhargava, S. et Saliola, F. (2011). Primitive orthogonal idempotents for R-trivial monoids. Dans DMTCS Proceedings: 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), (vol. AO, p. 123-134). http://dx.doi.org/10.46298/dmtcs.2896.
  • Aguiar, M., André, C., Benedetti, C., Bergeron, N., Chen, Z., Diaconis, P., Hendrickson, A., Hsiao, S., Isaacs, I.M., Jedwab, A., Johnson, K., Karaali, G., Lauve, A., Le, T., Lewis, S., Li, H., Magaard, K., Marberg, E., Novelli, J.-C., Pang, A., Saliola, F.,... Zabrocki, M. (2011). Supercharacters, symmetric functions in noncommuting variables (extended abstract). Dans DMTCS Proceedings: 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), (vol. AO, p. 3-14). http://dx.doi.org/10.46298/dmtcs.2967.